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Pulse propagation in a coupled resonator optical waveguide to all orders of dispersion
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In studying the propagation of optical pulses beyond the linear dispersion approximation, the conventional
term-by-term Taylor series expansion of the waveguide dispersion relationship fails when applied to the
recently introduced family of coupled resonator optical waveguides~CROWs!. We have found the surprising
result that retaining the complete form of the dispersion relationship in the tight-binding approximation does in
fact lead to a closed form analytical solution, clearly highlighting the role of the various phenomenological
factors. Such an analysis is usually not possible in the majority of waveguiding structures and is especially
useful in the design of photonic crystal CROWs and deep superstructure Bragg gratings.
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I. INTRODUCTION

A coupled resonator optical waveguide~CROW! @1,2#
comprises a periodic array of isolated structural eleme
~e.g., high-Q resonators such as defects in photonic crys
@3–5#—see Fig. 1! weakly coupled to one another. In dire
correspondence with the description of electrons in a p
odic potential in solid state physics, a CROW is an opti
waveguiding structure that can be described using the t
binding approximation@1#. Experimental demonstrations o
the CROW concept and corroboration of the analyti
model were recently presented@6,7#. Prior to the introduction
of the generic CROW family of waveguides, the tight bin
ing formalism was applied to the description of deep sup
structure gratings@8#.

We highlight below some of the particularly useful fe
tures of CROWs.

~1! The extensive literature on the properties of defects
photonic crystals@3,9,10# directly leads to both analytica
@11,12# and numerical@13# descriptions of the waveguid
modes; the range of analytical tools in the study of pu
propagation is further extended in this paper.

~2! The group velocity in CROWs can be several ord
of magnitude lower than in bulk material~of the same refrac-
tive index! @1#. This leads to an important class of applic
tions @14# such as photorefractive holography for all-optic
buffers in packet-switched optical networks@15#, highly ef-
ficient second harmonic generation@16#, etc.

~3! CROWs can be defined as a single~or a few!
waveguiding band~s! inside the photonic band gap with th
guided mode~s! well isolated from the continuum of mode
that lie outside the band gap. This is in contrast with ba
edge waveguides in photonic crystals, which can a
achieve low group velocity, but usually at the cost of po
confinement of the field to the desired modes.

In describing the propagation of an optical pulse, the fu
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damental carrier of information, in such a waveguide,
linear dispersion approximation for a CROW is useful in t
limit of sufficiently weak coupling between the high-Q reso-
nators. The initial analysis was carried out in this limit@12#.
In view of the critical importance of higher-order dispersio
terms in practical applications~e.g., group velocity disper-
sion, GVD!, we formulate in this paper a description of pul
propagation using the complete dispersion relationship~i.e.,
to all orders of dispersion!. We begin by stating the problem
in the terminology of CROWs in Sec. II. The following tw
sections present the main analytical results of this paper,
although the problem is nonlinear, there are certain gen
characteristics of the solution, as discussed in Sec. V.
Appendix serves both as a mathematical aside and a p
nent discussion of the slowly varying envelope approxim
tion in the physical context.

II. WAVEGUIDE MODES AND FORMULATION OF PULSE
PROPAGATION

We assume that the structural elements comprising
periodic waveguide, e.g., defect modes in a photonic cry
or photonic wells in the description of superstructure gr

FIG. 1. Schematic of an infinitely long 1D CROW with period
icity R consisting of defect cavities embedded in a 2D photo
crystal.
©2002 The American Physical Society01-1
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ings, are identical and lie along thez axis separated by a
distanceR. The waveguide mode, i.e., the eigenmode o
time-independent Hamiltonian,fk(z) at a particular propa-
gation constant~wave number! k is written as a linear com
bination of the individual modesc l(z) of the elements tha
comprise the structure,

fk~z!5(
n

exp~2 inkR!(
l

c l~z2nR!, ~1!

where the summation overn runs over the structural ele
ments and the summation overl refers to the bound states i
each individual element.

The dispersion relationship for a CROW around a cen
wave numberk0 is

vk01K5V~12Da/2!1Vk cos~KR![v01Dv cos~KR!,
~2!

whereV is the eigenfrequency of the individual resonato
and bothDa andk are overlap integrals involving the ind
vidual resonator modes and the spatial variation of the
electric constant@1#. In this paper, we restrict the range ofK
to the first Brillouin zone,uKuR,p.

The field describing a pulseE(z,t) is written as a super
position of waveguide modesfk(z) within the Brillouin
zone, with the corresponding time-evolution propagators~as
appropriate for any linear and time-invariant system!,

E~z,t !'E dk

2p
eiv(k)tckfk~z!,

5eiv0tE
2p/R

p/R dK

2p
exp@ iDvt cos~KR!#ck01Kfk01K~z!,

~3!

where the initial expression is merely schematic, and
limits of integration are explicitly introduced on the seco
line of Eq. ~3!.

The boundary conditions that arise in pulse propaga
problems typically specify a pulse shape at thez50 cross
section of the waveguide and centered at the optical
quencyv0,

E~z50,t !5eiv0tE~z50,t !, ~4!

so that the coefficientsck01K are derived from the equality o

Eq. ~3! evaluated atz50 and Eq.~4!,

E~z50,t !5E
2p/R

p/R dK

2p
exp@ iDvt cos~KR!#ck01Kfk01K~0!.

~5!

This is easily inverted in the limit of a linear dispersio
relationship in place of Eq.~2!—the integral operator re
duces to the well-known Fourier transform. For example
the dispersionless propagation of a pulse in free space,
easily verified that the envelope of Eq.~3! is a time-
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translated replica of the boundary condition, i.e.,E(z50,t
2z/vg), wherevg5dv/dk is the group velocity@12#.

In considering higher-order dispersion terms in the Tay
series expansion of the dispersion relationship, the inte
equation, Eq.~5!, cannot in general be inverted to obtain th
c’s in closed form. This is clearly evident when, for examp
the exponent involves terms of quadratic or higher polyn
mial powers ofK. Therefore, rather than work with the su
cessive terms in a Taylor series expansion of the disper
relationship, we will work with the full form of Eq.~2!.

We assume that the dispersion relationship is symme
about K50 @1#. We will also assume thatE(z50,t) is a
symmetric envelope. Consequently,ck01Kfk01K(0)

5ck02Kfk02K(0) for all K within the first Brillouin zone.
This is not a critical assumption, and relates to the choice
cosines rather than sines in Fourier series expansion, Eq~8!.

III. NEUMANN DECOMPOSITION OF THE BOUNDARY
CONDITION

We introduce changes of variables to highlight the ma
ematical structure of Eq.~5!,

w[KR,

x[Dvt,

h~f![ck01Kfk01K~0!,

f ~x![2RE~z50,x/Dv!, ~6!

so that Eq.~5! becomes

p f ~x!5E
2p

p

dweix coswh~w!, ~7!

where f (x) is a known function, in terms of which we wan
to find h(w). For the overwhelming majority of cases o
practical interest, we can instead find the coefficients in
expansion ofh(w) as a Fourier cosine series,

h~w!5 (
n50

`

cncos~nw!. ~8!

Using the identity@17#, @Eq. ~9.4-5!#

eix cosw5 (
m50

`

bmJm~x!cos~mw!,

where bm5H 1, m50,

2i m, m>1,
~9!

and the orthogonality of the cosines over the inter
(2p,p), we can simplify Eq.~7! to
1-2
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f ~x!5 (
n50

`

~bncn!Jn~x![ (
n50

`

anJn~x!. ~10!

Therefore, if we can expandf (x) @which describes the enve
lope at thez50 cross section—see Eq.~6!# in a Neumann
series@18, Chap. IX#, we can find the coefficientscn , and by
subsequently using Eq.~8! and Eq. ~6!, the coefficients
ck06K .

The envelopes of practical interest are usually anal
~more specifically, the complex signal description of t
envelope—e.g., the Fourier transform—has no singularit!
in some circle~of radius c! around the origin~if it is not
entire!, and a general way of obtaining thean’s is

an5
1

2p i Euzu5c8
dz f~z!On~z!, for 0,c8,c, ~11!

where

O2n~z!5
n

2 (
m50

n
~n1m21!!

~n2m!! S z

2D 22m21

,

O2n11~z!5
n11/2

2 (
m50

n
~n1m!!

~n2m!! S z

2D 22m22

, ~12!

are the Neumann polynomials@18, Chap. IX#.
Since the temporal envelope is a real function, we can

a simpler representation that does not require integratio
the complex plane, and is readily implementable num
cally. The identity@19, pp. 64–65#

E
0

`dt

t
Jn12n11~ t !Jn12m11~ t !5~4n12n12!21dmn

~13!

holds forn.21 and implies that a real functiong(x) of a
real variablex defined on the interval (0,̀) can be written as

g~x!5 (
n50

`

Jn12n11~x!F ~2n1214n!

3E
0

`dt

t
g~ t !Jn12n11~ t !G , n.21. ~14!

The derivation of this representation~for the special casen
50) is known as the Webb-Kapteyn theory of the Neuma
series.

Adding the series that results from Eq.~14! using n50
andn51, and assuming that the terms can be rearranged
can write the coefficientsan that appear in Eq.~10! as

an5H 0, n50,

nE
0

`dt

t
g~ t !Jn~ t !, n>1.

~15!
05660
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It is obvious that the functiong(t) should have no ‘‘dc
value’’ sinceJn(z);zn near the origin. Referring back to Eq
~6!, the function that we expand in the Neumann series
g(t)[ f (t)2 f (0).

An important, but technical, point relevant to the validi
of this simpler representation of the Neumann coefficient
discussed in the Appendix for the particular case of Gaus
envelopes,

E~z50,t !5expS 2
t2

T2D , ~16!

with a pulse width indicated byT. In this case, the coeffi-
cients evaluate to@21#, 11.4.28#

an52RH FDvT

2 Gn G~n/2!

2G~n! 1F1S n

2
;n11;2S DvT

2 D 2D21J ,

~17!

in terms of the confluent hypergeometric function.

IV. FIELD DESCRIBING PULSE PROPAGATION

Returning to the original notation, we have shown that
a consequence of the dispersion relationship@Eq. ~2!#, the
field describing the propagation of a pulse in a CROW c
be written as

E~z,t !5eiv0tE
2p/R

p/R dK

2p
exp@ iDvt cos~KR!#

fk01K~z!

fk01K~0!

3H (
n51

`
2nR

bn
S E

0

`dt8

t8
@E~z50,t8/Dv!

2E~0,0!#Jn~ t8!D cos~nKR!1ck0
fk0

~0!J , ~18!

where thebn’s are given by Eq.~9!, and the integral can be
evaluated for a specific case as in Eqs.~16!–~17!. It is as-
sumed in this analysis that the waveguide modes are kno
i.e., fk01K(z) is given by Eq.~1! andfk01K(0) evaluates to
a known number. As discussed in Ref.@12#, the assumption

@fk01K~0!#21'12(
l

c l~R!2 cos@~k01K !R#'1,

~19!

is usually well justified, so that to the leading orde
@fk01K(0)#2151 and Eq.~18! can be simplified further.

There is one extraneous degree of freedom in Eq.~18!,
physically representing an overall scale factor and rep
sented byck0

, which can be accounted for by Parseval’s r
lationship,
1-3
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E
2`

`

dtuE~z50,t !u25E
2p/R

p/R dK

2p S 2

RD uck01Ku2ufk01K~0!u2.

~20!

The integral overK in Eq. ~18! can be carried out by
writing the exponential in the form of Eq.~9!, and using Eq.
~19!. We define the coefficients

bn55
1

2R
ck0

, n50

n

i nE0

`dt8

t8
@E~0,t8!2E~0,0!#Jn~Dvt8!, n>1.

~21!

Using Eqs.~19! and ~1!, the integral overK in Eq. ~18!
may be simplified. A few pages of straightforward algeb
based on the orthogonality of the cosines leads to the exp
sion

E~z,t !5eiv0t (
m50

`

bmJm~Dvt ! (
n50

`

bn

3H 1

4
e2 i (6m6n)1k0R(

l
c l@z2~6m6n!1R#J

~22!

describing the forward propagation of a pulse in a CRO
We have used the symbol ‘‘6 ’’ in Eq. ~22! as a compact
notation for the sum over both choices of sign.

V. DISCUSSION

We will assume thatE(z50,t) is a Gaussian pulse define
by Eq. ~16!, with an appropriate shift of the temporal orig
of coordinates so that the envelope is well contained in
region tP(0,̀ ), which appears in Eq.~21!. Figures 2 and 3

FIG. 2. Temporal evolution of a Gaussian envelope at spec
distances inside a CROW, showing the effects of dispersive pro
gation, with Dv52. At greater depths, the peak of the envelo
arrives at a later time, and suffers distortion.
05660
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show the temporal envelope as would be observed at
specified distance into the CROW. For example, the fi
waveform along the ‘‘Distance’’ axis is the temporal Gaus
ian envelope as would be measured by a detector obser
the time evolution of the field atz50. Since no distance ha
been traversed inside the dispersive CROW, this is an un
torted wave form. The temporal envelope observed at lo
tions inside the CROW shows the accumulated effects
dispersion with increasing distance. Note that the crest of
Gaussian reaches farther distances at a later time, in ac
dance with the concept of group velocity in the case of lin
dispersion. Of course, there is no exact single velocity
rameter when we analyze dispersion to all orders; never
less, the effects of dispersion are appreciable only afte
certain distance has been propagated. We will now exam
the dependence of this distance onDv.

The differences between the two cases can be expla
by examining the argument of the Bessel functions in E
~22!. SinceJm(t);tm neart50, a smaller value forDv at
a fixed t involves fewer terms in the summation overm that
have a significant contribution toE(z,t). The ‘‘fit’’ to the
undistorted envelope is consequently worse, and the eff
of distortion become apparent over a shorter distance
propagation.

Physically, increasingDv implies that the range of fre
quencies that comprise the waveguiding band is larger
accordance with Eq.~2!. Therefore, a Gaussian pulse of
given temporal width can be better approximated by the
ear part of the dispersion relationship in the case of Fig
than Fig. 2, which leads to lesser distortion from t
‘‘wings’’ of the dispersion relationship.

Another feature visible in Figs. 2 and 3 relates to the slo
of the linear part of the dispersion relationship, which in t
dispersionless approximation is the group velocityvg . Based
on the form of Eq.~2!, this slope is larger for the case de
picted in Fig. 3. We know that in a dispersionless mediu
the envelope is invariant in the framet2z/vg , and increas-
ing vg lowers the quantityz/vg ~which has the dimensions o
time! at a givenz. In describing the evolution of the tempora

c
a-

FIG. 3. Temporal evolution of a Gaussian envelope at spec
distances inside a CROW, showing the effects of dispersive pro
gation, withDv53.
1-4
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peak of the envelope, this explains why the envelope app
to have propagated further in the case of Fig. 2 than in Fig

While these are physically intuitive explanations for t
phenomena observed in Figs. 2 and 3, it is important to
alize that the dispersion relationship is nonlinear, and c
cepts such as the group velocity and peak of the temp
envelope lose their meaning when the pulse has propaga
significant distance into the medium. Further, the bandwi
limitations discussed in the Appendix preclude considera
of arbitrarily short pulses and the consequences of the s
pling theorems@12# are not particularly illuminating in de
riving general conclusions for this nonlinear problem eith
Even when these simplified physical arguments fail, Eq.~22!
provides a clear framework for analyzing pulse propagat
in CROWs with a large family of pulses, of arbitrary shap
within the general limitations discussed in this paper.

Finally, in studies of pulse propagation in CROWs limite
to the case of linear dispersion@16#, it was convenient to take
the ~temporal! Fourier transform of the fieldE(z,t) to ex-
press it in ‘‘frequency space’’ asẼ(z,V), defined by

Ẽ~z,V!5E dt e2 iVtE~z,t !. ~23!

The Fourier transform of the Bessel functionJn(t) is singu-
lar atV561 ~and is usually defined withinuVu<1 @20, pp.
2–69#!, which further highlights the slowly varying approx
mation discussed in the Appendix: the frequency-space c
tent of the left-hand side of Eq.~22! should be contained
within uVu<1. Analyses in which the Fourier transform wa
taken with respect toz @15# are not similarly affected.

VI. CONCLUSION

In this paper, we have derived the field describing pu
propagation in coupled resonator optical waveguid
~CROWs!. For this particular class of waveguides, it is po
sible to describe linear pulse propagation beyond the lin
dispersion approximation. This further lends to the imp
tance of this family of waveguides, since they can be
signed, e.g., in photonic crystals, in the light of a detai
analytical theory of pulse propagation. We have discus
the most prominent dispersive effects of the propagation
Gaussian pulses.
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APPENDIX: WATSON’S CRITERION AND GAUSSIAN
ENVELOPES

As discussed by Watson@18, pp. 533–535#, there are
three criterion that need to be satisfied by an odd func
f (x) in order for the expansion Eq.~14! to be valid. In our
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case,f (x) is related~by a linear transformation! to the enve-
lope of the pulse at thez50 cross section of the CROW, an
it is entirely reasonable to assume that

~1! *0
` f (x)dx exits and is absolutely convergent. In o

analysis, the most important class of functions that repres
pulse envelopes are Gaussians~of real arguments! and we
may assume that

~2! f (x8) has a continuous differential coefficient for a
positive values ofx8,x, where x refers to the particular
value ofx chosen on the left-hand side of Eq.~14!. Watson’s
third criterion is in the form of an integral equation,

~3! For all t,x,

2 f 8~ t !5E
0

`dv
v

J1~v !@ f ~v1t !1 f ~v2t !#. ~A1!

We do not need to rigorously analyze this condition, a
will appeal instead to physical arguments. We assume
the envelopes we consider@such as taking the form of Eq
~16!# are sufficiently well behaved so that, using the defi
tion of a derivative,

f 8~ t !5
1

2
lim
v→0

F f ~ t1v !2 f ~ t !

v
1

f ~ t !2 f ~ t2v !

v G , ~A2!

and sincef (t) is odd,

2 f 8~ t !5 lim
v→0

f ~v1t !1 f ~v2t !

v
. ~A3!

It is now evident that one simple way of approximate
satisfying Eq.~A1! is to stipulatef (t1v)' f (t2v), and in
the limit of equality of the last relationship, the former
satisfied exactly~and trivially!. In the context of Eq.~16!,
broader Gaussian envelopes, with largerT, are ‘‘better’’ rep-
resented by the Webb-Kapteyn-Neumann series. This is
ily verified numerically.

More detailed investigations of Eq.~A1! in the context of
Eq. ~16! are unlikely, we believe, to reveal much more use
information. A criterion established by Bateman@22# for the
validity of Eq. ~14! is

E
0

`

dt f~ t !J0~ tx!5H c~x!, if x,1,

0, otherwise,
~A4!

wherec(x) is a function that takes nonzero values only
1-5
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the interval 0,x,1. Using Eq.~16! for f (t),

E
0

`

dt e2t2/T2
J0~ tx!5

Ap T

2
e2T2x2/8I 0S T2x2

8 D;
1

x
,

as x→`, ~A5!
ica
B:

R.

T.

05660
and Eq.~A4! is clearly not satisfied for any value ofT. Nev-
ertheless, Gaussian envelopes@and others with a property
similar to Eq.~A5!# are practically of considerable interes
In this context, the approach we have taken in the previ
paragraph circumvents the assumptions underlying Eq.~A4!
and Bateman’s subsequent conclusions.
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